
CVXPY Exercises

Steven Diamond

TCMM 2014

Files are posted at https://github.com/SteveDiamond/tcmm14_exercises.
Before starting the exercises on the provided laptops, you must update matplotlib. At

the command line, run

conda install matplotlib

1. Hello world. Solve the following optimization problem using CVXPY:

minimize |x| − 2
√
y

subject to 2 ≥ ex

x+ y = 5,

where x, y ∈ R are variables.

Find the optimal values of x and y.

2. LASSO. We wish to recover a sparse vector x ∈ Rn from measurements y ∈ Rm. Our
measurement model tells us that

y = Ax+ v,

where A ∈ Rm×n is a known matrix and v ∈ Rm is unknown measurement error. The
entries of v are drawn IID from the distribution N (0, σ2).

We can first try to recover x by solving the optimization problem

minimize ||Ax− y||22 + γ||x||22.

This problem is called ridge regression.

The file lasso.py defines n, m, A, x, and y. Use CVXPY to estimate x from y
using ridge regression. Try multiple values of γ. Use the plotting code in lasso.py to
compare the estimated x with the true x.

A more successful approach is to solve the LASSO problem

minimize ||Ax− y||22 + γ‖x‖1.

How many measurements m are needed to find an accurate x with ridge regression?
How about with the LASSO?

1

https://github.com/SteveDiamond/tcmm14_exercises

3. Minimum fuel optimal control. We consider a vehicle moving along a 2D plane. The
vehicle’s state at time t is described by xt ∈ R4, where (xt,0, xt,1) is the position of the
vehicle in two dimensions and (xt,0, xt,1) is the vehicle velocity. At each time t a drive
force (ut,0, ut,1) is applied to the vehicle.

The dynamics of the vehicle’s motion is given by the the linear recurrence

xt+1 = Axt +But, t = 0, . . . , N − 1,

where A ∈ R4×4 and B ∈ R4×2 are given. We assume that the initial state is zero, i.e.,
x0 = 0.

The minimum fuel optimal control problem is to choose the drive force u0, . . . , uN−1 so
as to minimize the total fuel consumed, which is given by

F =
N−1∑
t=0

f(ut),

subject to the constraint that xN = xdes, where N is the (given) time horizon, and
xdes ∈ R4 is the (given) desired final or target state. The function f : R2 → R is the
fuel use map and gives the amount of fuel used as a function of the drive force.

We will use
f(a) = ‖a‖22 + γ‖a‖1.

The file optimal_control.py defines N , A, B, and xdes. Use CVXPY to solve the
minimum fuel optimal control problem for γ ∈ {0, 1, 10, 100}.
Use the plotting code in optimal_control.py to plot x and u for each γ.

4. Power grid single commodity flow. Recall the definition of a single commodity flow
problem from the talk:

minimize
∑n

i=1 φi(fi) +
∑p

j=1 ψj(sj),

subject to zero net flow at each node

where fi is the flow on edge i, sj is the external source/sink flow into node j, and φi, ψj

are convex cost functions.

We will apply the single commodity flow framework to a power grid. Let nodes
{1, . . . , k} be generators. The output at generator j is sj. Each generator has the
constraint 0 ≤ sj ≤ Uj for some maximum output Uj and the cost function ψj(sj) = s2j .

Nodes {k + 1, . . . , p} are consumers. Each consumer j has a fixed load Lj, meaning
sj = Lj.

Each edge i has the constraint |fi| ≤ ci for some capacity ci and the cost function
φi(fi) = f 2

i . The edge flow cost represents power loss.

2

Explicitly, the power grid single commodity flow problem is

minimize
∑n

i=1 f
2
i +

∑k
j=1 s

2
j ,

subject to zero net flow at each node
0 ≤ sj ≤ Uj, j = 1, . . . , k
sj = Lj, j = k + 1, . . . , p
|fi| ≤ ci, i = 1, . . . , n.

The file power_grid.py defines the power grid graph, the maximum generator outputs
U , loads L, and edge capacities c. Complete the classes Generator, Consumer, and
CapEdge and use them to solve the power grid single commodity flow problem.

Use the plotting code in power_grid.py to plot the edge flows in the solution.

5. Extra I’ve included the code for the total variation in-painting example from the talk
in inpainting.py. Feel free to play around with it if you have time. Try changing
PROB_PIXEL_LOST to increase or decrease the number of known pixels.

3

